Schaub, M., J. v. Hirschheydt & M.U. Grübler (2015)

Differential contribution of demographic rate synchrony to population synchrony in barn swallows.

Further information

J. Anim. Ecol. 84: 1530–1541



1. Populations of many species show temporally synchronous dynamics over some range, mostly caused by spatial autocorrelation of the environment that affects demographic rates. Synchronous fluctuation of a demographic rate is a necessary, but not sufficient condition for population synchrony because population growth is differentially sensitive to variation in demographic rates. Little is known about the relative effects of demographic rates to population synchrony, because it is rare that all demographic rates from several populations are known.
2. We develop a hierarchical integrated population model with which all relevant demographic rates from all study populations can be estimated and apply it to demographic data of barn swallows Hirundo rustica from nine sites that were between 19 and 224 km apart from each other. We decompose the variation of the population growth and of the demographic rates (apparent survival, components of productivity, immigration) into global and local temporal components using random effects which allowed the estimation of synchrony of these rates.
3. The barn swallow populations fluctuated synchronously, but less so than most demographic rates. The highest synchrony showed the probability of double brooding, while fledging success was highly asynchronous. Apparent survival, immigration and total productivity achieved intermediate levels of synchrony. The growth of all populations was most sensitive to changes in immigration and adult apparent survival, and both of them contributed to the observed temporal variation of population growth rates.
4. Using a simulation model, we show that immigration and apparent survival of juveniles and adults were able to induce population synchrony, but not components of local productivity due to their low population growth rate sensitivity. Immigrants are mostly first-time breeders, and consequently, their number depends on the productivity of neighbouring populations. Since total productivity was synchronized, we conclude that it contributed to population synchrony in an indirect way through dispersing individuals which appear as immigrants at the local scale.
5. The hierarchical integrated population model is promising for achieving an improved mechanistic understanding of population synchrony.
Keywords: dispersal, fledging success, growth rate sensitivity, Hirundo rustica, Immigration, integrated population model, Moran effect, population dynamics, survival